

Hazard Ranking System (HPS) Scores for Region 9 Sites

Keith Taxata Volumial Signed by: Chier, Remedial Response System (T-3-1)

Stephen Calowell Hazardous site Control Division, OERK (WH-548-E)

Enclosed are the HKS scoring forms and documentation records for the Insular Territory sites. Please be reminded that these sites are the states' highest priority sites. The information is being transmitted per your request and the June 28, 1982 Guidance for Establishing the National Priority List.

The Insular Territory sites and respective HRS scores for which information has been forwarded are as follows:

Site Name, State	Total Score
PCB Wastes, Trust Territory of the Pacific Islands	32.6
Taputimu Farm, American Samoa	28.62
Ordot Landfill, Guan	15.65
PCB Warehouse, Commonwealth of the Northern Barianas	U. 0

Site investigations have not been performed and the information we have submitted is not complete. However, we will continue to obtain and verity information as we proceed with the remedial investigation/feasibility study of these highest priority sites scheduled to begin hovember 3, 1982.

If you have any questions please contact me at at FTS 454-7076.

T-3-1:Young:dw:8142:11/1:846A

Facility name: ORDOT LANDFILL
Location: Guam
EPA Region: Kegion IX
Person(s) in charge of the facility: Territorial Government of Quam
Name of Reviewer: Man W. M. Joury General description of the facility: (For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.)
Scores: $S_M = 15.65 (S_{gw} = 25.75 S_{gw} = 8.39 S_a = 0.0)$
S _{FE} =
S _{DC} =

t. , -=

FIGURE 1 HRS COVER SHEET

			Ground Water Route Work Shee	et .			
	Rating Factor		Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)
	Observed Release)	() 45	1	0	45	3.1
		_	n a score of 45, proceed to line 4 n a score of 0, proceed to line 2.	•			
2	Route Characteris Depth to Aquifer Concern		(1) 1 2 3	2	0	6	3.2
	Net Precipitation Permeability of t Unsaturated Zo	he	0 1 2 3 0 1 2 3	1	3	3 3	
	Physical State		0 🖒 2 3	1	1	3	
			Total Route Characteristics Score		6	15	
3	Containment		0 1 2 🚳	1	3	3	3.3
4	Waste Characteris Toxicity/Persiste Hazardous Wast Quantity	ence	0 3 6 9 12 15 (3) 0 1 (2) 3 4 5 6 7 8	1	18	18 8	3.4
			Total Waste Characteristics Score		20	26	
5	Targets Ground Water U Distance to Nea Well/Populatio Served	rest	0 1 2 3 0 4 6 8 10 12 16 18 20 24 30 32 35 40	3 1	6 35	9 40	3.5
			Total Targets Score		41	49	
8			1 × 4 × 5 2 × 3 × 4 × 5		14,760 -	57,330	
7	Divide line 6 b	y 57,330	and multiply by 100	Sgw=	25.7	75	

FIGURE 2
GROUND WATER ROUTE WORK SHEET

	Surface Water Route Work Sheet										
	Rating Factor			sign Circi				Multi- plier	Score	Max. Score	Ref. (Section)
1	Observed Release		0			4 3		1	45	45	4.1
	If observed release	•			•						•
2	Route Characteristic	:s									4.2
	Facility Slope and Terrain	Intervening	0	1 2	3			1		3	
	1-yr. 24-hr. Rainfall Distance to Neares		0	1 2				1 2		3 6	
	Water	st Junace	_	_						-	
	Physical State			1 2	3			1		3	
		Tota	al Rout	e Ch	aract	teristic	s Score			15	
3	Containment		0	1 2	3			1		3	4.3
4	Waste Characteristic Toxicity/Persisten Hazardous Waste Quantity	се				12 15 4 5	③ 6 7 8	1 1	18 2	18 8	4.4
		Tota	ai Wasi	te Ch	arac	teristic	s Score		20	26	
5	Targets Surface Water Use Distance to a Sens Environment Population Served to Water Intake Downstream	sitive	°(e) (e) ≥ 24	1 1 4 16 30	2 6 18 32	20	10 40	3 2 1	0 0	9 6 40	4.5
			Tot	al Ta	rgets	Score	е		G	55	
6	If line 1 is 45, m If line 1 is 0, mu	ultiply 1				5			5,400	64,350	
7	Divide line 6 by	64,350 and	multipl	у бу	100			S _{sw} =	8.39	1	

FIGURE 7
SURFACE WATER ROUTE WORK SHEET

	Air Route Work Sheet													
	Rating Factor			ssigne (Circle			3				Multi- plier	Score	Max. Score	Ref. (Section)
1	Observed Release		<u></u>			4	5				1	0	45	5.1
	Date and Location:													
	Sampling Protocol:										······································	·······		
			0. Enter or											
2	Waste Characteristi Reactivity and	ic s	0	1 2	3						1		3	5.2
	Incompatibility Toxicity Hazardous Waste Quantity		· 0	1 2 1 2	3	4	5	6	7	8	3 1		9 8	
			Total Was	te Cha	aract	eri	stic	s S	core	•			20	
3	Targets Population Within 4-Mile Radius		} 0 21	9 12 24 27		18					1	•	30	5.3
	Distance to Sensit Environment Land Use	tive		1 2							2		6 3	
	Land USe		U	1 4	3						'		3	
														į
			Tot	al Tar	gets	Sc	ore)					39	
4	Multiply 1 x 2	x 3											35,100	
5	5 Divide line 4 by 35,100 and multiply by 100 Sa =													

FIGURE 9 AIR ROUTE WORK SHEET

	s	S ²
Groundwater Route Score (Sgw)	25.75	663,06
Surface Water Route Score (S _{SW})	B. 39	70.39
Air Route Score (Sa)	0.0	o. 0
$s_{gw}^2 + s_{sw}^2 + s_a^2$		733.45
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		27.08
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		15.65

FIGURE 10 WORKSHEET FOR COMPUTING S_M

			Fire a	nd	Exp	olos	ion	Wo	ork Sheet				
	Rating Factor				gne rcie			8		Multi- plier	Score	Max. Score	Ref. (Section)
1	Containment		1					3		1		3	7.1
2	Waste Characteris Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity			1 1 1 1	2		4	5	6 7 8	1 1 1 1		3 3 3 3 8	7.2
		· · · · · · · · · · · · · · · · · · ·	Total Was	te	Cha	ırac	teri	stic	s Score			20	
3	Targets Distance to Neard Population Distance to Neard Building Distance to Sens Environment Land Use Population Within 2-Mile Radius Buildings Within 2-Mile Radius	est	0	1 1 1 1		3 3 3 3	4	5		1 1 1 1 1		5 3 3 5 5	7.3
		<u> </u>	То	tai	Tar	get	s So	core				24	
4	Multiply 1 x 2	2 × 3				-						1,440	
5	Divide line 4 b	y 1,440 ai	nd multipl	y b	y 10	00				SFE =			

FIGURE 11
FIRE AND EXPLOSION WORK SHEET

	Direct Contact Work Sheet											
	Rating Factor		sign Circ						Multi- plier	Score	Max. Score	Ref. (Section)
回	Observed Incident	0				45	5		1		45	8.1
	If line 1 is 45, proceed to 11 is 0, proceed to 12 is 11 is 12 is											
2	Accessibility	0	1 2	?	3				1		3	8.2
3	Containment	0	18	5					1		15	8.3
4	Waste Characteristics Toxicity	0	1 2	2	3				5		15	8.4
[5]	Targets Population Within a 1-Mile Radius	0	1 2	2	3	4	5	-	4		20	8.5
	Distance to a Critical Habitat	0	1 2	?	3				4		12	
												1
		Tot	al Ta	ırg	ets	Sc	ore	-,		·	32	
8	If line 1 is 45, multiply If line 1 is 0, multiply					5					21,600	
7	Divide line 6 by 21,600	and multipl	y by	10	ю				S _{DC} =			

FIGURE 12 DIRECT CONTACT WORK SHEET

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: The purpose of these records is to provide a convenient way to prepare an auditable record of the data and documentation used to apply the Hazard Ranking System to a given facility. As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference that will make the document used for a given data point easier to find. Include the location of the document and consider appending a copy of the relevant page(s) for ease in review.

FACILITY NAME: Ordot	Landfill	
LOCATION: Guam	•	

References:

1. MITRE MODEL (SUPERFUND) VERIFICATION .
prepared by Dan Cryster

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

Mean annual lake or seasonal evaporation (list months for seasonal):

Net precipitation (subtract the above figures):

> +15 inches/year Ref. no. 1, page 2, item 2.

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

> 10-3 cm/sec

Ref. 1, item 3.

Permeability associated with soil type:

10-4 cm/sec

Ref. 1, ikm 3.

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Solid, unconsolidated, unstabilized. Ref. 1, items 5-8.

5 TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

Petable water. Ref 1, item 9.

Distance to Nearest Well

Location of nearest well drawing from aquifer of concern or occupied building not served by a public water supply:

2,500 pl. Ref. 1, item 10.

Distance to above well or building:

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from aquifer(s) of concern within a 3-mile radius and populations served by each:

Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

Total population served by ground water within a 3-mile radius:

> 10,000 Ref. 1, item 11.

Is the facility completely surrounded by areas of higher elevation? 1-Year 24-Hour Rainfall in Inches Distance to Nearest Downslope Surface Water Physical State of Waste 3 CONTAINMENT Containment Method(s) of waste or leachate containment evaluated: Method with highest score:

Is there tidal influence?

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

Distance to 5-acre (minimum) fresh-water wetland, if I mile or less:

Distance to critical habitat of an endangered species or national wildlife refuge, if I mile or less:

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

AIR ROUTE

1 OBSERVED RELEASE No documented evidence.
Contaminants detected:
Date and location of detection of contaminants
Methods used to detect the contaminants:
Rationale for attributing the contaminants to the site:
* * *
2 WASTE CHARACTERISTICS
Reactivity and Incompatibility
Most reactive compound:

Most incompatible pair of compounds:

Distance to critical habitat of an endangered species, if I mile or less:

Land Use

Distance to commercial/industrial area, if I mile or less:

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Distance to residential area, if 2 miles or less:

Distance to agricultural land in production within past 5 years, if I mile or less:

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?